De mens in mensenmassa's Het complexe samenspel van individu en collectief

Roland Geraerts Universitair docent Eric de Wilde CEO Ron Looy Projectleider

Our story

Societal relevance of simulation

- The number of environments with big crowds are growing
- Questions
 - In how much time can a train station be evacuated?
 - Where and how can potential dangerous situations appear?
 - How can a city accommodate 0.5M people during an event?
 - How can we populate a game world with a believable crowd?

Love Parade, 2010 21 deaths, 510 injuries

Real-time, interactive crowd simulation

UU Crowd Simulation R&D Unity3D Plugin

4

can you simulate a human crowd interactivel?

Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

Van Toll, Jaklin, and Geraerts, 2015. <u>Towards Believable Crowds: A Generic</u> <u>Multi-Level Framework for Agent Navigation</u>.

Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

Van Toll, Jaklin, and Geraerts, 2015. <u>Towards Believable Crowds: A Generic</u> <u>Multi-Level Framework for Agent Navigation</u>.

But, this doesn't this already exist?

- There are standards such as BIM, CityGML,...
 - Not common practice, many geometric errors
- Current solutions make approximations and errors

- Goal: extract the walkable areas *exactly*
 - Input environment

- Goal: extract the walkable areas *exactly*
 - Remove (annotate) steep polygons

- Goal: extract the walkable areas *exactly*
 - Cut out polygons giving headaches
 - Resolve degeneracies
 - Resolve intersections

- Goal: extract the walkable areas *exactly*
 - Simplify triangulations

- Goal: extract the walkable areas *exactly*
 - Separate into 2D (projectable) layers

- Goal: extract the walkable areas *exactly*
 - Resolve gaps

J.L. Vermeulen et al. <u>Annotating traversable gaps in walkable environments</u>. In Int. Conf. on Robotics and Automation, 2018. 15

that has nice properties and can be queried fast

What is the best representation for the walkable space of a *multi-layered 3D* environment?

- Compute a 2D navigation mesh per layer
- Stitching the navigation meshes

• Favorable properties

Large environments are processed within 1 second

van Toll et al. The Medial Axis of a Multi-Layered Environment and its Application as a Navigation Mesh. Trans. on Spatial Alg. & Syst.. 4(1), 2018.

• Handles dynamic updates

From navigation mesh to simulation of 1 pedestrian

Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

Van Toll, Jaklin, and Geraerts, 2015. <u>Towards Believable Crowds: A Generic</u> <u>Multi-Level Framework for Agent Navigation</u>.

Action planning

- Splits up a task into geometric queries
 - Example: dynamic updates of the crowd

Standard behavior pedestrians take the same terminal

Improved behavior pedestrians distribute amongst all terminals

M. Koenis, 2016: Impact of Pedestrians Bringing Along Their Bicycles on Evacuation Times of Subway Stations

Action planning

- Splits up a task into geometric queries
 - Example: dynamic updates of the crowd

Small agents

- Commuters (aware of change)
- Incidental visitor (not aware)

Van Toll et al, 2015: Dynamically Pruned A* for Replanning in Navigation Meshes

Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

Van Toll, Jaklin, and Geraerts, 2015. <u>Towards Believable Crowds: A Generic</u> <u>Multi-Level Framework for Agent Navigation</u>.

Indicative Routes

- A path planning algorithm should NOT compute a path
 - A one-dimensional path limits the agent's freedom
 - Humans don't do that either
- It should produce
 - An Indicative/Preferred Route
 - A corridor around this route

Computing Indicative Routes

• Example: shortest path with clearance to obstacles

Jaklin et al, 2014: Computing High-Quality Paths in Weighted Regions

Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

Van Toll, Jaklin, and Geraerts, 2015. <u>Towards Believable Crowds: A Generic</u> <u>Multi-Level Framework for Agent Navigation</u>.

Following routes

- Basic algorithm
 - An attraction point on the indicative route guides the pedestrian to its goal
 - Obstacles repulse pedestrians when they are too close

From simulation of 1 pedestrian to a crowd

Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

Van Toll, Jaklin, and Geraerts, 2015. <u>Towards Believable Crowds: A Generic</u> <u>Multi-Level Framework for Agent Navigation</u>.

What is realistic collision avoidance behavior?

Smack the pony s01x02

What is realistic collision avoidance behavior?

Crowd prank in Japan

Adapting the routes: Collision avoidance

• Our model is derived from experiments in the MOCAP lab

PhD students: Wouter van Toll and Norman Jaklin

Adapting the routes: Collision avoidance

• Our model slightly adjusts the people's movements

Karamouzas et al, 2009: A Predictive Collision Avoidance Model for Pedestrian Simulation

Adapting the routes: Social groups

The group members stay close and visible to each other

Kremyzas et al, 2016: Towards Social Behavior in VirtualAgent Navigation

Adapting the routes: Moving through a dense crowd

People can make room for a passing individual

Adapting the routes: Unification of individual and collective movements

- Our stream-based model allows local coordination, based on a agent's incentive
 - Deviation from the local flow
 - Local density

- Internal motivation
- Spent time to reach goal

Van Goethem et al, 2015: On Streams and Incentives: A Synthesis of Individual and Collective Crowd Motion

Crowd simulation framework

- Representation environment
- Level 5
 - Plans actions
- Level 4
 - Creates indicative routes
- Level 3
 - Traverses the routes
 - Yields speed/direction pairs
- Level 2
 - Adapts routes
 - E.g. to avoid collisions
- Level 1
 - Moves the characters

Van Toll, Jaklin, and Geraerts, 2015. <u>Towards Believable Crowds: A Generic</u> <u>Multi-Level Framework for Agent Navigation</u>.

Current developments

- Real-time crowd prediction, analysis and decision support
 - A sensing system computes the pedestrians' positions
 - This calibrates the simulation in real -time with the real world
 - Makes predictions of the coming minutes
 - May run 24/7
 - Prevents unsafe situations and make the city / station safer
 - Special attention is paid to preserving privacy and complying with ethical requirements set by society

Software

Software package

- Core engine in C++
- Runs on 64bit Windows
 - Linux, MacOS, iOS
- Also available as a plugin for Unity3D
 - <u>https://ucrowds.com/documentation/unity3d/</u>
- To obtain a license, send a request
 - Our startup
 - info@ucrowds.com

Applications

Optimizing crowd flows

Tour de France

Optimizing of outdoor area layout

Utrecht Stationsplein

Evacuation studies (with bicycles)

Metro stations before operation

Conducting what if scenarios

Rail at transport hub

Tangible interaction

Education and training Public engagement

Contact

Universiteit Utrecht

Nebsite	http://www.cs.uu.nl/~roland
E-mail	R.J.Geraerts@uu.nl
_inkedIn	http://www.linkedin.com/in/rolandgeraerts
Portfolio	www.youtube.com/user/drRolandJan
Tel.	+31628804901
Address	Princetonplein 5, Utrecht, room BBG 4.18

Crowds

Website	www.ucrowds.com
E-mail	contact@ucrowds.com
Twitter	@u_crowds
LinkedIn	https://www.linkedin.com/in/ucrowds/
Portfolio	https://tinyurl.com/u -crowds
Address	Padualaan 8, Utrecht, room W125

